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Highlights 

 The scheduling problem of multiple additive manufacturing machines is addressed. 

 MILP models are developed to minimise the makespan on different machine types. 

 Single, parallel identical and parallel non-identical machines are scheduled. 

 Computational tests indicate the necessity of improved techniques. 

 The models proposed can easily be adopted by additive manufacturing firms. 
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Abstract 

Additive manufacturing (AM), also known as 3D printing, is gaining enormous importance in the 

production of highly customised quality and lightweight products in low quantities. In addition to 

AM’s use in producing fully functional industrial components, it is also seen as a technology of the 

future that will enable civilisation in space. Although the cost structures for AM facilities have been 

sufficiently studied in the literature, no effort has been made to investigate the scheduling problem of 

AM machines with the aim of optimising processing time-related performance measures. This paper 

focuses on the scheduling problem of single and multiple AM machines and proposes mathematical 

models for optimisation. Mixed-integer linear programming models allocate parts into jobs to be 

produced on AM machines to minimise makespan. The problem was handled by considering different 

machine configurations (i.e. single machine, parallel identical machines, and parallel non-identical 

machines). The models were coded in IBM ILOG CPLEX Optimization Studio (v12.8.0) and solved 

through the CPLEX solver. This paper presents detailed solutions for numerical examples. A 

comprehensive computational study was also conducted, and the results are presented. The optimum 

solutions are reported for most problems. The best solutions obtained within the time limit (i.e. 1,800 

and 2,400 seconds) are reported for the parallel identical and non-identical AM machine scheduling 

problems if optimum solution could not be verified. 

Keywords: additive manufacturing, 3D printing, scheduling, mathematical modelling, MILP 

1. Introduction 

AM is a common domain for the manufacturing of parts layer by layer. AM is also called 3D printing, 

as the objects are made from 3D-model data through joining the materials, as opposed to subtractive 

traditional techniques [1]. Various AM technologies have been developed since the 1980s, and 

selective laser melting, laser engineered shaping, and electron beam melting have become the most 

famous techniques for rapid manufacturing. AM processes provide many significant advantages, such 

as design flexibility, high accuracy, resource efficiency, and material efficiency, over traditional 

techniques [2]. Among these, design flexibility is probably the most important, especially when AM 

technology has shifted from prototyping to direct part production (also known as direct digital 

manufacturing) with the rapid development of material science and manufacturing technologies.  

Many companies in various industries, such as aeronautics, automotive, healthcare, defence, etc., can 

now digitally manufacture their end-use metallic parts from powder materials, leading to a new 
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industrial revolution. The total AM market is predicted to rise nearly six-fold to $12 billion in 2025, 

driven by growth in various industries including prototypes, moulds and aerospace [3]. NASA has 

reported that 70 additively manufactured parts were used for the Mars Rover test vehicles. The fuel 

nozzles, each of which requires an assembly of 20 different parts, were directly manufactured by 

General Electric. NASA created the first ever made-in-space parts (including a wrench) using AM in 

2014. Thus, along with AM’s use in the automotive and aerospace industries for years (Boeing printed 

22 thousand parts used on aircrafts by 2012), AM technology now helps astronauts build their own 

parts and tools when required. This is a major advancement in the aerospace industry, as it could take 

months or even years to get equipment to space, depending on the launch resupply schedule. Moreover, 

NASA additively manufactured a turbopump, used as a rocket engine fuel pump (made with hundreds 

of parts including a turbine that spins at over 90,000 rpm) [4]. It was reported that, in comparison with 

pumps made with traditional manufacturing, the additively manufactured pump has 45 per cent fewer 

parts.  

AM manufacturing technologies have been extensively studied in the literature. However, the majority 

of these studies have focused on the process itself. For example, Cooper et al. [5] addressed the 

development of additively manufactured hydraulic components for Formula 1 racing cars to reduce 

weight and improve efficiency. Khajavi et al. [6] investigated the potential impact of AM technology 

on the configuration of spare parts supply chains. The study provided guidance for the deployment of 

AM machines in spare parts supply chains.  

The AM process considered in this research was selective laser melting (SLM). Figure 1 presents the 

concept for the AM machine scheduling problem. Due to the high purchasing cost of SLM machines, 

it might be more practical for companies to outsource this service in terms of cost efficiency. Thus, the 

orders received from distributed customers are regrouped and allocated to machines as different sets of 

job batches. In this regrouping process, it is important to ensure that the machine’s physical capacity 

(i.e. height and area) is sufficient to produce the allocated parts. This is a basic constraint that must be 

satisfied in terms of practicality. However, AM machines have various speed and cost characteristics 

that must be considered to get the parts produced with time and cost efficiency. The problem is how to 

regroup parts and allocate them into jobs to optimise performance measures such as total cost or 

makespan.  

As seen in Figure 1, an AM machine can produce more than one part simultaneously on its platform, 

subject to its capacity and the production area needed by parts. A job in an AM machine scheduling 

problem is defined as the set of parts to be produced in the same batch. Therefore, any part produced 

in a job cannot be removed until the whole job (the production of all parts in the same job) is 

completed. To start a new job on an AM machine, a series of operations are performed to setup the 

machine, such as data preparation, powder material filling, machine adjustment, and protective 

atmosphere filling. Thus, the set-up time is shared by all parts allocated to the same job. In fact, in 
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addition to the high purchasing cost of AM machines, one of the main limits to the wider application 

of the SLM process is the high cost caused by the layer-by-layer production due to the nature of the 

SLM process itself. If decentralised orders received from dispersed customers are grouped in such a 

way, the utilisation of AM facilities is increased. Hence, the common costs (e.g. setup and post 

processing operations) are shared by all parts and the average cost is decreased.  

 

Figure 1. Concept model for AM production scheduling  

In the sense that the parts are scheduled in batches on the machines, the problem may look similar to 

the well-known batch scheduling problem with arbitrary job sizes [7,8] in the literature. Note that the 

terms part and job are used within the AM machine scheduling concept, which correspond to job and 

batch used in the batch scheduling problem, respectively. In its simplest form, only one batch machine 

is considered and the single batch machine scheduling problem [9] arises when there are batches and 

setup times required between these batches [10]. The aim is to allocate jobs (referred to as parts in the 

AM machine scheduling problem) into batches. If there is a single batch machine to which a set of 

jobs (with the same processing times) needs to be allocated in batches, the makespan problem is 

equivalent to a well-known bin packing problem [11]. The bin packing problem is strongly NP-hard 

based on Garey and Jackson [12], so minimizing the makespan in the single batch machine scheduling 

problem with unequal processing times (or arbitrary job sizes) is strongly NP-hard [11]. Therefore, our 

single AM machine scheduling problem is also strongly NP-hard. Considering that the processing time 

of a job is a function (as will be explained in Section 2), it is more complex than the single batch 

machine scheduling problem. When there are parallel batch machines (             ), the problem 

of minimizing makespan (which is already strongly NP-hard in a single batch machine environment), 

becomes even harder to solve [13]. Hence, the parallel identical and parallel non-identical AM 

machine scheduling problems studied in this paper are also strongly NP-hard as contextualised above.  
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The single machine batch scheduling problem has been extensively studied in the literature. To cite a 

few, Cheng et al. [14] aimed to minimise the total flow time of items produced on a batch machine. 

They assumed the flow time of an item to be the completion time of the batch that contains it. Ghosh 

and Gupta [15] addressed the problem with the aim of minimising maximum lateness. Relatively 

recent studies have addressed the parallel batch machine scheduling problems with identical and non-

identical machines and proposed heuristic/metaheuristic techniques due to the complexity of the 

problem (see, for example, Jia and Leung [16], and Zhou et al. [17] for algorithms for solving parallel 

identical batch machine scheduling problems; and Li e al. [8], and Shahidi-Zadeh et al. [18] for 

algorithms for parallel non-identical batch machine scheduling problems). Trindade et al. [19] 

discussed four different versions of batch scheduling problems, considering a single processing 

machine or parallel processing machines and considering jobs with or without release times. Li and 

Zhang [20] provided more details on exact and heuristic methods to minimise makespan in the single 

batch machine scheduling problem, and Mendez et al. [21] made a state-of-the-art review of 

optimisation methods for the short-term scheduling of batch processes. Potts and Kovalyov [22] 

presented a comprehensive survey on batch scheduling problems and Webster and Baker [23] 

presented an overview of algorithms and complexity results for scheduling batch processing machines. 

While there are similarities between the batch scheduling problems and AM machine scheduling 

problems studied in this paper, the AM machine scheduling problem differs from the batch scheduling 

problem in several ways (regardless of considering single or parallel machines) [1]. First of all, the 

production time of the parts in the AM machine scheduling problem is not known in advance, because 

the processing time of a job on an AM machine is resource dependent and dynamically characterised 

by the total volume of the parts included in the job, as well as by the maximum heights of those parts. 

On the other hand, in the batch scheduling problems, the processing time of a batch is determined by 

the largest processing time of the jobs included in the batch. Therefore, in the AM machine scheduling 

problem, allocating parts with similar heights to the same job may help reduce the makespan. Also, as 

the parts produced in AM machines involve complex structures (not conveniently produced through 

traditional manufacturing processes), the processing times are dramatically long. Secondly, as the 

processing time of a job is calculated via a function, different sets or combinations of parts will lead to 

different costs in the AM machine scheduling problem [1]. Thirdly, in the AM machine scheduling 

problem, there is a trade-off between machine utilisation and job completion time due to the unique 

nature of this technology. While it is necessary to increase the utilisation of the AM machine to 

minimise the number of batches and reduce setup times, this causes an increase in the production time 

of the job batch. For this aim, the AM machine scheduling problem may include a very complex 2D 

nesting problem (or even a 3D packing problem) to further increase the utilisation of the machines. 

However, including such a complex problem into the strongly NP-hard AM machine scheduling 

problem may transform it to an unsolvable problem.  
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As seen from the summary given above, different combinations of parts in batches affect the 

feasibility of the solution and yield different performance measures in terms of completion time. 

Additionally, the production area capacity constraint needs to be satisfied to obtain a feasible solution. 

These issues make the problem even more complex to solve in comparison to the traditional single-

batch machine scheduling problem. Therefore, sophisticated techniques are required. 

The research on the planning and scheduling of production in AM, i.e. the decision for the allocation 

of parts to job batches on the AM machines, is limited. Kucukkoc et al. [2] introduced the AM 

machine scheduling problem to maximise the utilisation of AM machines in terms of the production 

areas used. They developed a mathematical model to maximise resource utilisation considering the 

delivery times of parts. However, no experiments were conducted, to either run the model or to test its 

performance. Li et al. [1] introduced the problem of planning AM machines. A mixed-integer linear 

programming (MILP) model was proposed and solved via CPLEX and they newly developed two 

heuristics, best-fit and adapted best-fit heuristics, to minimise the average production cost per material 

volume. Their computational study resulted in two important outcomes: (i) planning AM machines 

helps reduce processing costs considerably and (ii) the algorithms have promising solution capacity. 

Kucukkoc et al. [24] proposed a genetic algorithm approach to minimise maximum lateness in the 

multiple machine environment. However, as seen from this survey, no research has been conducted to 

address the production scheduling of AM machines to optimise a processing time-related performance 

measure, such as makespan or flow time. Chergui et al. [25] addressed the production scheduling and 

nesting problem in additive manufacturing and proposed a heuristic approach. The parallel identical 

AM machines were considered to minimise the maximum lateness. Fera et al. [26] presented a cost-

based model for the scheduling problem of a single AM machine to minimise the weighted total of 

earliness and tardiness costs. Dvorak et al. [27] studied the AM machine scheduling problem with part 

due dates to minimise the number of tardy parts (referred to as tardy builds in the corresponding paper) 

and addressed to the main challenges of the problem. Fera et al. [28] addressed the single AM machine 

scheduling problem to minimise time and cost. Zhang et al. [29] analysed the multi-parts placement 

problem in AM and proposed a two-step strategy. The problem is a special case of well-known nesting 

problem, referred to as NP-hard [29]. Zhang et al. [30] focussed on the optimisation process of build 

orientation for multi-part production in additive manufacturing and proposed a two-stage approach as 

a solution method. There also are some conceptual works which aim at addressing both the build 

orientation and 2D packing and scheduling problem, see for example Oh et al. [31]. 

In contrast to the studies summarised above, this paper is original and contributes to the literature by 

introducing and mathematically modelling the scheduling problem of single and multiple AM 

machines to optimise a processing time-related performance measure with various machine type 

considerations. First, this study is the first in the literature to define the problem as a single AM 

machine scheduling problem to optimise the makespan, represented as     . To be consistent with the 
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scheduling literature, this problem is denoted as                 . Second, the problem is extended 

to a parallel AM machine scheduling problem with identical machines (denoted with 

                 ), which is also the first time this has been done. Thus, more than one machine 

with the same specifications (i.e. speed, set-up time, height, and area capacity) can be scheduled 

simultaneously. Furthermore, non-identical machines are considered and the problem of parallel non-

identical AM machine scheduling problem (                 ) is defined for the first time. In this 

version, the machines may have different specifications, as given above. Each problem type was 

modelled mathematically as a MILP model and the numerical examples were solved using the models 

coded in IBM ILOG CPLEX Optimization Studio (v12.8.0).  

The paper is organised as follows. Section 2, Section 3, and Section 4 present the MILP models 

developed for single, parallel identical, and parallel non-identical machine scheduling problems, 

respectively. Numerical examples and their optimum solutions are also provided in the corresponding 

sections. A comprehensive computational study was conducted and the results are reported for each 

problem type in Section 5. The paper concludes in Section 6, together with some insights for future 

research directions. 

2.  Single machine environment (                ) 

The problem of                  consists of one AM machine and a total of    parts (          

        ) to be allocated to a total of    jobs. Note that the value of    may be lower than or equal to 

   (     ), as there can be at most a total of    jobs in case each part is allocated to a job individually. 

The parts may have different specifications, i.e. height (  ), area (  ), and volume (  ), which form the 

basic parameters of the model. The other resource related parameters of the problem are as follows: 

   : Time spent to form per unit volume of material 

   : Time spent for powder-layering, which is repeated for each layer based on the highest part 

produced in the job  

    : Set-up time needed for initialising and cleaning 

   : The production area of the machine’s tray 

The shapes of the parts are not considered in the model as the major aim of this paper is to focus on 

the scheduling problem of AM machines. Instead, it is ensured that the total area of the parts assigned 

to a job does not exceed   . This is because considering a two-dimensional placement of shapes on a 

building platform (or a tray) may make the problem, which is already NP-hard in a strong sense (as 

explained in the previous section), very complicated and hard to solve. There are some papers focusing 

only the problem of determining building orientations or placements of multi-parts on a tray [29], 

rather than scheduling the AM machines. Another reason contributing to this outcome is that    is 

calculated considering the rectangular shapes of the projection area of parts on the building platform. 

Thus, some security tolerances exist between    and real or exact shapes of the parts to be scheduled, 
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which does not cause infeasibility when allocating exact shapes on the tray. It is also worthy to note 

that the parts are usually designed with a pre-determined build orientation to maximise the quality. So, 

it is not practical to change the building orientation of the parts to gain more space on the tray.  

It is assumed that the heights (areas) of all parts are smaller than or equal to the maximum height (area) 

supported by the machine. Different from many conventional batch scheduling problems, the 

production time of a job increases depending on the content of the job, i.e. the total volume of the 

allocated parts and especially the maximum height included in the job. The job processing time is a 

function, such that it is calculated using Equation (1). 

                ∑      

   

       
   

{      }  (1) 

where     is a binary variable that equals 1 if part   is assigned to job  . Similarly,    is a binary 

variable that equals 1 if ∑    
  
      for     . That means    is equal to 1 if there is at least one part 

assigned to job   (if job   is utilised, in other words). Note that the setup time is included in the job 

processing time, as shown in Equation (1). As seen in the equation,     dynamically changes with the 

allocation of parts to jobs in different ways. Thus, with some minor changes in their allocations to jobs, 

it is possible to get the same parts produced with different durations. 

The jobs on the same machine are processed in the order of          as they are utilised sequentially 

and only one job can be processed at a time. Hence, the completion time of job  , represented by   , is 

determined using     as in Equation (2).  

                     . (2) 

As a basic assumption of the scheduling problems, only one job can be processed on the machine at a 

time. Therefore, a job can start upon completing the previous job on the same machine.    is assumed 

to be zero, so that the machine is available at the beginning of the planning period.  

The objective is to minimise the makespan, represented by         
   

{  } as formulated in Equation 

(3).  

         
   

{  }  (3) 

The constraints of the problem are part occurrence constraint (Equation 4), area capacity constraint 

(Equation 5), job utilisation constraint (Equation 6), completion time constraints (Equations 7 and 8), 

production time calculation constraint (Equation 9), and sign constraints (Equation 10). Note that   is 

a large positive number. 

∑   

   

              (4) 
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∑         

   

            (5) 

∑        

   

  ∑   

   

                      (6) 

                              (7) 

    . (8) 

              ∑      

   

       
   

{      }            (9) 

   ,                         . (10) 

The part occurrence constraint (4) ensures that each part is assigned to exactly one job, while the area 

capacity constraint (5) ensures the total area of parts assigned to a job does not exceed the machine’s 

capacity. The job utilisation constraint (6) guarantees that jobs are utilised in an incremental order 

starting from job 1. For example, job 3 would not be utilised if there were no part assigned to job 2. 

The first completion time constraint (7) ensures that the completion time of each job is greater than or 

equal to the summation of its start time (i.e. the completion time of the previous job,    , on the 

machine) and production time. The other completion time constraint (8) sets the starting time of the 

first job to zero (the machine is made available at the beginning). The production time constraint (9) 

calculates the job production time. Finally, the sign constraints define the binary variables     and   . 

Note that      if ∑          for     . 

Let us assume a small example with 12 jobs and one machine. Table 1 provides the part specifications, 

and the machine parameters are assumed to be                   ,             ,     

    , and           . 

Table 1. Details of the 12 parts for the example problem 

Part ( ) Height (  ) -     Area (  ) -   
  Volume (  ) -   

  

1 6.90 209.06 826.08 

2 26.04 550.11 952.60 

3 15.97 23.63 71.91 

4 17.04 99.53 703.08 

5 27.94 56.85 272.92 

6 17.38 50.02 125.70 

7 11.81 435.66 1142.25 

8 2.67 84.97 121.82 

9 17.13 48.27 315.00 

10 4.27 122.62 102.83 

11 2.18 178.34 214.79 

12 6.48 134.08 124.66 
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The optimum solution was obtained by solving the proposed model coded in IBM ILOG CPLEX 

Optimization Studio (v12.8.0) through the CPLEX solver. The code was run on an Intel® Core™ i7-

6700HQ CPU @2.60 GHz with 16 GB RAM. The objective value of 187.92 was obtained in less than 

a second. Table 2 presents the allocation of parts to jobs. The table shows that all parts are allocated to 

a total of three jobs (          ). 

Table 2. The allocation of parts and the details of jobs for the optimum solution 

Job 

( ) 
Allocated parts 

Total Area  

(∑          ) 

Total Volume  

(∑          ) 

                

1 10, 11 300.96 317.62 4.27 13.992 13.992 

2 1, 7, 8, 12 863.77 2214.81 11.81 77.825 91.817 

3 2, 3, 4, 5, 6, 9 828.41 2441.21 27.94 96.104 187.921 

 

To obtain the solution given above, the value of    (the upper bound for the number of possible jobs) 

was set to      (one possible job is empty as no parts allocated). The same optimum solution would 

be obtained when      or even      (with more empty possible jobs), but the program would 

consume larger computation times to find the same optimum solution and prove its optimality. On the 

one hand, some slackness is needed to obtain the optimum solution, which requires a higher    value. 

On the other hand, the preliminary tests showed that setting     to a higher value (such as      ) is 

quite time consuming for the models proposed. The difference in computation time may be ignored for 

the small size problems, but it considerably increases when the problem size gets bigger. 

Based on the optimum solution presented above, the Gantt chart of the solution can be drawn as in 

Figure 2. The numbers given in the bars denote part numbers while the length of the bars corresponds 

to the production time. The parts in the same job start and finish processing at the same time, as it is 

not possible to interrupt a job or take the completed parts out while a job is continuing. Note that the 

setup time needed for jobs is included in the production time. 

 

Figure 2. Gantt chart for the optimum solution of the single AM machine scheduling problem 

 

3. Parallel identical machines (                 ) 

The parallel identical AM machine scheduling problem with the aim of minimising makespan is 

symbolised with                  . Apparently, more than one AM machine is operating in 

parallel. As the machine specifications are the same, any part can be processed on any machine, 

assuming that the machines are tall and large enough to produce any part.  
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There is a total of    parts (    and           ) to be grouped in job batches (    and   

        )  on each AM machine (    and           ). The binary decision variable      is 1 

if part   is assigned to job   on machine  ; it is zero, otherwise. Another binary decision variable     

is 1 if any part is assigned to job   on machine   (if the job is utilised); it is zero, otherwise. The 

notation in the previous subsection also defines the part specifications, i.e.    for height,    for area, 

and    for volume. The same notation is also used for the machine specifications, i.e.   ,   ,    , 

and   , to keep consistency. The production time (    ) and the completion time (   ) for job   on 

machine   are calculated with Equations (11) and (12), respectively.  

                ∑       

   

       
   

{       }                  (11) 

                                (12) 

With the addition of the machine index,  , the production and completion times of jobs become 

machine specific. So, a new job on an AM machine can start after the completion of the last job on the 

same machine,                  for         .     is set to zero, so all machines are 

available at the beginning of the planning period.  

The objective is to minimise the makespan, see Equation (13). 

         
       

{   }  (13) 

The constraints were slightly modified as follows due to the newly included machine index.  

∑ ∑    

      

              (14) 

∑          

   

                  (15) 

∑         

   

  ∑    

   

                   (16) 

                                   (17) 

                 (18) 

                ∑       

   

       
   

{       }                  (19) 

    ,                   ;     ;     . (20) 

Equations (14) and (15) satisfy the part occurrence constraint and area capacity constraint, respectively. 

The jobs are utilised incrementally (starting from job 1) on each machine with the help of Equation 

(16). For example, job 2 cannot be utilised if job 1 is empty on the same machine. Equation (17) 
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guarantees that the completion time of a job on a specific machine is greater than or equal to the sum 

of its production time and the completion time of the previous job on the same machine. Thus, a job 

can start on a machine after completion of either the previous or an ongoing job on the same machine. 

The start times of first jobs on each machine are set to zero to ensure that the machines are available at 

the beginning of the planning period with the help of Equation (18). The production times of jobs are 

calculated using Equation (19). Equation (20) denotes the sign constraints of binary decision variables 

where       if ∑           (     and     ).  

Let us assume a simple numerical example with twenty parts (for which the details are given in Table 

3), assuming two AM machines executing jobs in parallel with slightly different parameters. Due to 

the nature of the parallel machine scheduling problem, the parameters are the same for both machines 

(i.e.                   ,             ,         , and           ). 

Table 3. Details of the parts 

Part ( ) Height (  ) -     Area (  ) -   
  Volume (  ) -   

  

1 6.90 209.06 826.08 
2 26.04 550.11 952.60 
3 15.97 23.63 71.91 
4 17.04 99.53 703.08 
5 27.94 56.85 272.92 
6 36.50 742.97 1583.98 
7 17.38 50.02 125.70 
8 18.46 300.66 3144.39 
9 11.81 435.66 1142.25 
10 21.79 131.88 1840.39 
11 12.59 349.83 2204.41 
12 2.67 84.97 121.82 
13 17.13 48.27 315.00 
14 12.53 269.66 1786.36 
15 18.09 175.77 1885.00 
16 4.27 122.62 102.83 
17 2.18 178.34 214.79 
18 25.10 569.53 2867.59 
19 37.25 464.89 2378.05 
20 6.48 134.08 124.66 

 

Parameter    was set to three and the mathematical model was solved with CPLEX running on the 

same computer whose specifications are given in the previous section. Table 4 shows the optimum 

solution, which was obtained with the objective value of 403.30 within four seconds. As seen from the 

results, the difference between the completion times of all jobs on machine 1 and machine 2 (403.30 

hr and 403.22 hr, respectively) is very small. 

Table 4 shows a total of six jobs being utilised on two machines. The gaps between the determined 

value of    and the number of jobs utilised on each machine (   ∑    
  
   ,     ) are zero. If the 

value of    is set to four (rather than three), the same solution is found (so, the gap,    ∑    
  
   , 

becomes 1 for     ), but the solution time increases dramatically from four seconds to 166 

seconds. That means the solution obtained is optimum and does not change if the value of    is set to a 
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value even larger than four. Note that the total area of jobs is close to the capacity of the machines, 

which indicates high area utilisation.  

Table 4. The allocation of parts and the details of jobs for the optimum solution 

    Allocated parts 
Total Area  

(∑           ) 

Total Volume  

(∑           ) 
                  

1 1 4, 5, 6 899.35 2559.98 36.50 105.56 105.56 

 2 2, 11 899.94 3157.01 26.04 116.67 222.23 

 3 3, 7, 13, 15, 18 867.22 5265.20 25.10 181.08 403.30 

2 1 9, 14 705.32 2928.61 12.53 100.16 100.16 

 2 1, 12, 16, 17, 20 729.07 1390.18 6.90 48.74 148.90 

 3 8, 10, 19 897.43 7362.83 37.25 254.32 403.22 

* Bold indicates      

Monma and Potts [32] showed that the makespan problem is NP-hard for two identical parallel batch 

machines. Moving from that point, the parallel identical AM machine scheduling problem can be 

considered NP-hard as contextualised for the single AM machine scheduling problem in Section 1. 

Furthermore, the problem with non-identical (or unrelated) parallel machines, presented in the next 

section, is also NP-hard, as it is even more complicated than the identical machines form. In non-

identical parallel machines, the machines support different heights, which greatly affects the 

combination of parts assigned to the machines. This is because the production time of a batch is 

characterised by the part with maximum height in that batch. Moreover, any part cannot be produced 

on any machine. The non-identical machines also have building platforms of different sizes that 

correspond to the production area constraint to limit the allocation of parts into batches. Last, but not 

least, the AM machines have different speed specifications, so the part processing times are resource 

depended. 

4. Parallel non-identical AM machines (                 ) 

This section defines the parallel AM machine scheduling problem with different machine 

specifications, referred to as non-identical. Therefore, considering machine specific parameters for   , 

  ,    , and    is required. Thus, these parameters have been identified with the index   (i.e.    , 

   ,     , and    , respectively). There is also a new parameter to represent the height of each 

machine,    , to differentiate the machines in terms of the maximum height supported. When 

machines have different     values, some parts may be produced on an AM machine, while some 

others may not. This is another capacity constraint that needs to be satisfied in addition to the area 

capacity constraint. To formulate, Equation (21) must be satisfied to ensure the height capacity 

constraint.  

                                   (21) 

In the parallel identical machine scheduling problem (in the previous section), it was assumed that the 

heights of parts must be lower than or equal to the heights of the machines. However, in the non-
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identical machine scheduling problem, this assumption can be changed to the maximum height of parts 

must be lower than or equal to the maximum height supported by at least one machine (           

           ). Similarly, there should be at least one machine that can produce the part with the 

maximum area,                       . 

In contrast to the parallel identical AM machine scheduling problem, the production time calculation 

for job   on machine   can be made using Equation (22).  

                  ∑       

   

        
   

{       }                  (22) 

There is no difference in the calculation of job completion time (                 for    

     ) and the availability of the machines at the beginning of the planning period (     ).  

With the above modifications, the complete MILP model for the                   problem is 

presented as follows. 

         
       

{   }  (23) 

Subject to:  

∑ ∑    

      

              (24) 

∑           

   

                  (25) 

                                   (26) 

∑         

   

  ∑    

   

                   (27) 

                                    (28) 

                 (29) 

                  ∑       

   

        
   

{       }                 (30) 

    ,                   ;     ;     . (31) 

The objective function given in Equation (23) aims to minimise the makespan, ensuring the constraints 

given above. The part occurrence constraint (24), job utilisation constraint (27), job completion time 

constraints (28-29), and sign constraints (31) are the same as in the parallel identical machine 

scheduling problem. However, the area capacity constraint (25) is modified and the height capacity 

constraint (26) is newly added. Also, the job production time calculation is made using the machine 

specific parameters given in Equation (30). 
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Let us consider the numerical example already given in the previous section (Section 3), assuming 

there is no change in the parts data. Table 5 gives the parameters of the non-identical machines, which 

shows that the machines require different setup times and support different heights and areas for 

production.  

Table 5. The machine specific parameters for the numerical example 

      (      )    (     )      (  )     (  )     (   ) 

1 0.030864 0.7 1.0 32 800 

2 0.030864 0.7 1.2 40 1200 

 

The optimum solution obtained through CPLEX within 16 seconds (when     ) is presented in 

Table 6, together with the details of jobs, including      and    . As seen in the table, two and three 

jobs are utilised on machine 1 and machine 2, respectively. The gap between the value of    and the 

total number of utilised jobs on machine 1 and machine 2 are two and one, respectively. This shows 

that the value of    provides enough flexibility to guarantee the optimum solution, i.e. the optimum 

solution does not change when it is set to      or even larger.  

 
Table 6. The allocation of parts and the details of jobs for the optimum solution of the parallel non-identical 

machine scheduling problem 

    Allocated parts 
Total Area  

(∑           ) 

Total Volume  

(∑           ) 
                  

1 1 8, 13, 14, 15 794.36 7130.75 18.46 234.01 234.01 

 2 10, 18 701.41 4707.98 25.10 163.88 397.88 

2 1 5, 6, 7, 11 1199.67 4187.01 27.94 155.98 155.98 

 2 2, 3, 4, 19 1138.16 4105.64 37.25 153.99 309.97 

 3 1, 9, 12, 16, 17, 20 1164.73 2532.43 11.81 87.628 397.60 

* Bold indicates      

The makespan is 397.88, determined by the completion time of the second job on machine 1. However, 

the difference between the makespan and the completion time of the last job on the second machine is 

very small. This minimises idle time, which also shows the power of the model. Investigating the parts 

included in the jobs reveals that parts 6 and 19, which exceed the height capacity of machine 1, are 

allocated to jobs 1 and 2 on machine 2, respectively. Also, the area capacities of machine 1 and 

machine 2 (800     and 1200    ) are not exceeded based on the values reported in the Total Area 

column.  

Comparing the solutions obtained for identical and non-identical machines reveals that the total 

number of jobs decreased from six to five due to the increase in the area capacity of the second 

machine. This also helped decrease the value of     . 

5. Computational tests 

This section presents a comprehensive set of computational tests for the single machine, parallel 

identical machine, and parallel non-identical machine scheduling problems described in Sections 2, 3, 



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

and 4, respectively. The test data were mostly derived from the work of Li et al. [1] and organised in 

such a way to represent the problem characteristics considered in this research. Detailed problem data 

about the parts and machine characteristics are provided as supplementary material.  

The models presented in this study were coded in IBM ILOG CPLEX Optimization Studio (v12.8.0) 

and test problems were solved through the CPLEX solver. Computations were conducted on an Intel® 

Core™ i7-6700HQ CPU @2.60 GHz with 16 GB RAM.  

Table 7 presents a summary of the input data and the optimum results obtained (detailed results are 

available upon request). Columns    and    represent the number of parts and upper bounds for the 

number of jobs. Column      represents the objective value (makespan) of the optimum solution obtained. 

The time consumed to get the optimum solution is reported in column Computation Time. The number of 

jobs required for the optimum solution is also reported in column “∑   
  
   ”. When determining the value 

of   , consider that    does not cause any infeasibility, which gives enough slackness to obtain the optimum 

solution (as discussed in Sections 2, 3, and 4). As seen in the table, the results were obtained very 

quickly, as none required more than eight seconds.  

Table 7. The problem data and the results for the single machine scheduling problem 

Test Problem 

Input Output 

           ∑   
  
     

Computation 

Time (s) 

P1 6 3 201.36 2 4.80 

P2 6 3 198.83 2 4.90 

P3 7 4 181.23 3 5.20 

P4 7 3 173.83 2 5.20 

P5 8 4 190.96 3 5.00 

P6 8 3 183.55 2 5.00 

P7 9 5 266.10 4 5.50 

P8 9 4 254.00 3 5.30 

P9 10 5 283.03 4 5.30 

P10 10 4 275.62 3 5.10 

P11 11 5 374.22 4 5.20 

P12 11 4 364.85 3 5.20 

P13 12 7 538.09 5 5.00 

P14 12 6 528.12 4 7.70 

 

Table 8 presents the test data for the parallel identical machine scheduling problem and the results 

obtained. Columns   ,   , and    represent the number of parts, the number of machines, and the 

upper bound for the number of jobs to be utilised on each machine, respectively. Column      reports 

the objective value (makespan) of the obtained solution and column Optimality exhibits the optimality 

condition. The letter “Y” indicates that the solution has been proven to be optimum within the time 

period reported in the column Computation Time given the value of   . The total number of jobs 

utilised on the machines is given in the column “∑ ∑    
  
   

  
   ”. The number of jobs utilised on each 

machine is also presented in the next column, “[∑    
  
   ]”. For example, the optimum solution for 
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test problem P15 was obtained within 11 seconds. A total of five jobs were utilised on two machines, 

two of which were on machine 1 and the remaining three on machine 2. The term “Lim+” indicates 

that the code was run under the time limit constraint given in the column Computation Time, but the 

optimum solution was not found. So, the table reports the best solution obtained within the period. 

That is the case for the large-sized instances due to the grown search space with increasing numbers of 

parts, machines, and jobs. For example, consider P33. The optimum solution could not be verified 

within the time limit of 1800 seconds. The best solution (not known whether optimum) requires three, 

one, and two jobs on the first, second, and third machines, respectively. 

Table 8. The problem data and the results for the parallel identical machine scheduling problem 

Test 

Problem 

Input Output     

              Optimality ∑ ∑    
  
   

  
     [∑    

  
   ] 

Computation 

Time (s) 

P15 15 2 3 197.51 Y 5 [2], [3] 8.20 

P16 15 2 3 203.89 Y 4 [2], [2] 7.80 

P17 17 2 4 389.97 Y 6 [2], [4] 45.00 

P18 17 2 3 397.78 Y 5 [3], [2] 9.00 

P19 18 2 3 381.17 Y 6 [3], [3] 9.90 

P20 18 2 3 385.08 Y 5 [2], [3] 18.20 

P21 21 2 3 280.61 Y 5 [2], [3] 30.40 

P22 21 2 3 294.95 Y 6 [3], [3] 21.50 

P23 22 2 3 414.32 Y 5 [2], [3] 18.50 

P24 22 2 3 433.10 Y 6 [3], [3] 10.10 

P25 23 2 3 435.43 Y 6 [3], [3] 40.50 

P26 23 2 3 454.85 Y 6 [3], [3] 35.00 

P27 25 2 3 438.41 Y 6 [3], [3] 294.30 

P28 25 2 3 462.36 Y 6 [3], [3] 533.00 

P29 28 3 3 348.54 Lim+ 7 [3], [1], [3] 1800.00 

P30 28 3 3 358.80 Lim+ 7 [1], [3], [3] 1800.00 

P31 30 3 2 341.51 Y 6 [2], [2], [2] 12.2 

P32 30 3 3 349.25 Lim+ 6 [3], [1], [3] 1800.00 

P33 36 3 3 368.68 Lim+ 6 [1], [3], [3] 1800.00 

P34 36 3 3 378.79 Lim+ 7 [3], [3], [1] 1800.00 

P35 38 3 3 361.05 Lim+ 7 [3], [3], [1] 1800.00 

P36 38 3 3 371.74 Lim+ 7 [1], [3], [3] 1800.00 

P37 46 3 3 435.71 Lim+ 8 [2], [3], [3] 1800.00 

P38 46 3 3 447.10 Lim+ 8 [3], [2], [3] 1800.00 

Similar to the parallel identical machine scheduling problem, Table 9 presents the problem data and 

the results for the parallel non-identical machine scheduling problem. Note that the problems contain 

the same number of parts and machines as in the parallel identical machine scheduling problems. 

However, in contrast with the parallel identical machine scheduling problem, the machine 

specifications may vary. Therefore, while all parts can be processed on any machine in the parallel 

identical machine scheduling problems, some parts cannot be produced on some machines due to 

height capacity constraints. The optimum solutions are reported in column      if it is denoted with 
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the letter “Y” in the column Optimality. When it was not possible to obtain the optimum solution 

(those identified with “Lim+”), the best solution obtained within 2400 seconds is reported. 

Table 9. The problem data and the results for the parallel non-identical machine scheduling problem 

Test 

Problem 

Input Output     

              Optimality ∑ ∑    
  
   

  
     [∑    

  
   ] 

Computation 

Time (s) 

P39 15 2 3 195.44 Y 5 [3], [2] 5.80 

P40 15 2 3 199.45 Y 5 [3], [2] 5.80 

P41 17 2 3 385.59 Y 5 [2], [3] 8.40 

P42 17 2 3 396.93 Y 6 [3], [3] 5.80 

P43 18 2 3 372.58 Y 6 [3], [3] 7.40 

P44 18 2 3 380.22 Y 6 [3], [3] 7.60 

P45 21 2 3 286.53 Y 6 [3], [3] 21.40 

P46 21 2 3 293.09 Y 6 [3], [3] 28.20 

P47 22 2 3 425.93 Y 6 [3], [3] 26.20 

P48 22 2 3 435.51 Y 6 [3], [3] 38.90 

P49 23 2 3 447.48 Y 6 [3], [3] 67.00 

P50 23 2 3 456.31 Y 6 [3], [3] 84.00 

P51 25 3 3 296.05 Y 7 [1], [3], [3] 48.90 

P52 25 3 3 299.71 Y 6 [1], [3], [2] 141.10 

P53 28 3 3 351.67 Lim+ 8 [2], [3], [3] 2400 

P54 28 3 3 357.76 Lim+ 7 [3], [2], [3] 2400 

P55 30 3 3 342.30 Lim+ 7 [2], [2], [3] 2400 

P56 30 3 3 345.04 Lim+ 8 [1], [3], [3] 2400 

P57 36 3 3 374.05 Lim+ 8 [2], [3], [3] 2400 

P58 36 3 3 377.12 Lim+ 9 [3], [3], [3] 2400 

P59 38 3 3 364.62 Lim+ 8 [2], [3], [3] 2400 

P60 38 3 3 368.94 Lim+ 8 [2], [3], [3] 2400 

P61 46 3 4 443.71 Lim+ 9 [2], [3], [4] 2400 

P62 46 3 3 445.38 Lim+ 9 [3], [3], [3] 2400 

 

The optimum solutions have been proven to be optimum under the constraint that the upper bound for 

the number of jobs on each machine is set to   , given in the table. In some cases, relaxing the value of 

   may yield better solutions for the parallel non-identical machine scheduling problems. This is 

because the machines may have different characteristics. So, allocating more parts and jobs on those 

with lower values of     and     parameters can lead to better solutions. For example, the optimum 

solution for P42 was 396.93 when    was set to three; three jobs were utilised on each of the AM 

machines. However, if    were set to four (instead of three), the optimum solution would be 394.35 

with two jobs utilised on the first machine and four jobs utilised on the second machine. Obviously, 

the objective value reduces very slightly. However, the computation time increases to 35 seconds, 

which corresponds to a remarkable increase over the 5.8 seconds when    was set to three. However, 

this is not the case for P43, where the optimum solution (           ) does not change even if the 

value of    is set to four. On the contrary, the computation time increases from 7.40 seconds to 42 

seconds. Therefore, enough gap should be provided for the    parameter, but increases in computation 
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time should be kept in mind when doing so. There is a trade-off between the computation time and 

possible improvement in the objective value. 

6. Conclusions and future work 

This paper introduced the production scheduling problem of AM machines with the aim of minimising 

makespan. In terms of the configuration of the machines, three types of problems have been 

considered: single machine, parallel identical machines, and parallel non-identical machines. The 

problems have been defined, modelled as MILPs, and explored through numerical examples. 

Computational tests were conducted through test data derived from the literature and adapted to the 

characteristics of the problems. The optimum solutions have been reported where the computational 

capacity allows, e.g. all single model problems, up to 30 parts-3 parallel identical machines and up to 

25 parts-3 parallel non-identical machines. The best solutions obtained within the time limits (1800 

and 2400 seconds for the parallel identical and parallel non-identical machine scheduling problems, 

respectively) are reported for problems for which computational capacity does not allow an optimum 

solution. The results of this study clearly show the difficulty of solving the problems when problem 

size increases. This indicates the necessity of heuristic and metaheuristics to solve large-scale problem 

instances. 

The methods proposed in this study can easily be adopted by any firm using AM technology for 

developing efficient schedules. Even AM firms that provide on-demand supply for additively 

manufactured products through the internet can use the methods proposed in this study to simulate 

their production environment and give accurate quotes to their customers. 

In addition to the proposal given above that indicates the necessity of heuristic/metaheuristic 

approaches for solving large-scale instances, the models developed here can be even extended in 

several ways. First, a methodology to determine a well-defined upper bound can be developed to 

balance the trade-off between computation time and optimality for the parallel identical/non-identical 

machine scheduling problem. Second, the due dates of the parts/products can be considered and the 

objectives of minimising lateness, maximum lateness, total number of late jobs, etc. can be optimised 

individually or concurrently. Finally, a comprehensive nesting procedure can be integrated into the 

model to allocate parts on the machines based on their exact dimensions on the vertical and horizontal 

axes, rather than the production area.  
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